Precision **PRESS BRAKE TOOLING**

AIR BENDING FORCE CHART - INCHES

The figures shown in bold print signify die openings equal to eight times the material thickness. These are recommended for average applications and will yield an inside radius equal to approximately 15% of the die opening. Required bending tonnage varies directly with the tensile strength of the material. Conversion factors for materials other than mild steel are available.

TONNAGES REQUIRED FOR AIR BENDING MILD STEEL (with tensile strength of 60,000 lbs. psi). For wider or narrower openings in same stock, refer to the numbers left or right of the recommended tonnage.

v		4mm	6mm	7mm	8mm	10mm	12mm	14mm	16mm	18mm	20mm	25mm	32mm	40mm	50mm	63mm	80mm	100mm	125mm	160mm	200mm	250mm
V(in)		0.157	0.236	0.276	0.315	0.394	0.472	0.551	0.630	0.709	0.787	0.984	1.260	1.575	1.969	2.480	3.150	3.937	4.921	6.299	7.874	9.843
MF		0.110	0.165	0.193	0.220	0.276	0.331	0.397	0.454	0.510	0.567	0.709	0.945	1.181	1.476	1.860	2.362	2.953	3.789	4.850	6.063	7.579
IR		0.026	0.039	0.046	0.052	0.066	0.079	0.092	0.105	0.118	0.131	0.164	0.210	0.262	0.328	0.413	0.525	0.656	0.820	1.050	1.312	1.640
GA.	DEC.		1	ons	requ i	ired _l	oer li	near	foot	using	g air l	bend	dies	with	thes	e″V″	die o	openi	ings			
20	.036	5.3	3.7	3.1	2.6	2.1	1.8															
18	.048		6.7	5.9	4.7	3.8	2.8	2.5	1.9													
16	.060				7.6	6.1	5.1	4.1	3.6	3.2	2.8											
14	.075					11.1	8.1	6.9	5.6	4.9	4.2	3.0										
12	.105						15.1	13.1	11.1	9.3	7.5	5.4	4.1									
11	.120								15.9	13.1	9.9	7.2	5.1	3.9								
10	.135										11.9	9.1	6.3	4.8	3.1							
3/16	.188											24.1	14.9	10.9	7.6	5.8						
1/4	.250												30.1	20.1	13.9	10.6	8.6					
5/16	.313													36.1	25.1	18.1	12.9	10.1				
3/8	.375														37.9	28.1	19.9	14.9	11.1			
1/2	.500															52.1	39.1	29.9	21.9	16.1		
5/8	.625																70.1	52.1	38.1	27.1	19.9	15.1
3/4	.750																	92.0	68.0	53.0	36.3	27.0
1	1.0																			112.0	76.0	56.0

SAFETY WARNING

The press brake dies shown in this catalog should be used in strict compliance with all local, state and federal safety standards, as well as those outlined in the American National Standards Institute Bulletin A.N.S.I. #B11-3.

Press brake dies are never intended to be used in equipment without a means provided for preventing any and all body parts from entering or remaining in the die space at any time.

It is the user's responsibility to make certain that point of operation protection is effective and that all applicable safety requirements are met.